Энергия ветра: использование

Энергию ветра, человек начал использовать в далеком прошлом. Это были ветряные мельницы, построенные в Персии в 200-х годах до н. э. и предназначенные для размола зерна.

Ветряные мельницы

Первая ветро-электростанция была построена еще в 1931 году в Ялте и развивала мощность до 100 кВт.

Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 м и четырёхлопастные роторы диаметром 23 м.

Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 м. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт.

В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги. Возрождение интереса к ветроэнергетике началось в 1980-х, когда в Калифорнии начали предоставляться налоговые льготы для производителей электроэнергии из ветра.

В настоящее время ветроэнергетика является бурно развивающейся отраслью, так в конце 2010 года общая установленная мощность всех ветрогенераторов составила 196,66 ГВт.

Принцип работы ветро-электростанции.

Принцип работы ветро-электростанции.

Ресурсов ветра достаточно, чтобы многократно удовлетворять потребности человечества в энергии.

Атмосферные турбины, вращающиеся под воздействием постоянных и быстрых потоков ветра, дующих на больших высотах, могут вырабатывать больше энергии, чем наземные и шельфовые турбины. В новом исследовании Кена Калдейры (Ken Caldeira) из Университета Карнеги приводится оценка максимального количества энергии, которое может быть выработано ветрогенераторами, а также рассматривается воздействие высотного сбора энергии на климат Земли.

Команда ученых из Ливерморской национальной лаборатории во главе с Кейт Марвел (Kate Marvel), начинавшей эти исследования в Университете Карнеги, использовала моделирование для количественного определения электроэнергии, вырабатываемой как с помощью приповерхностных, так и атмосферных ветров, дующих на больших высотах. К приповерхностным ветрам ученые отнесли те потоки воздуха, которые доступны для турбин, находящихся на земле или на морском шельфе. Высотными считаются такие ветры, доступ к которым может быть получен с помощью технологии объединения турбин и воздушных змеев. В исследовании рассматривались лишь геофизические ограничения таких технологий, технические или экономические факторы в расчет не принимались.

Схема ветрогенератора

Схема ветрогенератора.

Турбины препятствуют перемещению воздуха, создавая сопротивление, снижающее движущую силу ветра, что приводит к его замедлению. При увеличении количества ветрогенераторов количество вырабатываемой электроэнергии также увеличивается. Но в какой-то момент ветры станут замедлены на столько, что добавление новых генераторов не приведет к росту выработки энергии. Исследование было сосредоточено на поиске точки, в которой количество вырабатываемой энергии максимально.

Используя модели, исследователи смогли определить, что с помощью наземных турбин можно получить более 400 ТВт энергии, а за счет высотных потоков воздуха – более 1800 ТВт.

Сегодня человечество потребляет около 18 ТВт энергии. Ветры, дующие у поверхности Земли, могут двадцатикратно удовлетворить наши потребности в энергии, а атмосферные потоки – стократно.

При максимальных уровнях извлечения энергии ветра последствия для климата могли бы быть весьма пагубными. Однако, как показали исследования, при сегодняшнем уровне потребности в энергии влияние ветрогенераторов будет незначительным, тем более, при равномерном распределении турбин по поверхности Земли, а не сосредоточении их в нескольких отдельных регионах. При этом температура может измениться всего на 0,1°С, а влияние на осадки будет в пределах 1%. В целом воздействие на окружающую среду не будет существенным.

Схема устройства простого ветрогенератора.

Схема устройства простого ветрогенератора.

Но, по мнению Калдейры, рост ветроэнергетики во всем мире будут, скорее всего, определять не геофизические ограничения, а технологические и политические факторы.

Разработанные NASA воздушные ветроэнергетические системы эффективнее традиционных турбин.

Ветряные турбогенераторы, устанавливаемые на земле, на сегодня представляют собой «золотой стандарт» ветроэнергетики. Но инженеры NASA работают над уникальной альтернативой – воздушными ветроэнергетическими системами. NASA делает упор на 2 основных элемента новой технологии – набор вырабатывающих электричество турбин, установленных на воздушном змее, и наземный генератор, соединенный с воздушным змеем и получающий энергию за счет его вращательных движений, когда тот ловит ветер.

Как сообщается, КПД такой воздушной системы достигает 90% благодаря вращательной фазе змея, которая использует на 10% меньше энергии. Другой ключевой особенностью новой системы является то, что лопасти турбины вращаются быстрее и удалены на большее расстояние от своего центра, что позволяет вырабатывать электроэнергию в большем количестве. В составе системы также имеется программное обеспечение распознавания движений наподобие Kinect компании Microsoft, которое может определять положение воздушного змея в пространстве, а также направление его движения и скорость.

Кроме того, имеется система управления полетом, позволяющая воздушному змею описывать «восьмерку». Прототип змея, над усовершенствованием которого работает NASA, имеет размах крыльев 10 футов (примерно 3 м). Также в NASA запросили разрешение на испытание системы на высоте 2000 футов (примерно 610 м), которая, как предполагается, является идеальной для работы воздушных ветроэнергетических систем. В NASA планируют использовать такую систему в будущем, и не только на Земле, но и на Марсе и других планетах.

Ветроэнергетика в России

В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л.с., 8 л.с. до 45 л.с. Такая установка могла освещать 150—200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор.

Принцип работы ветряной турбины

Принцип работы ветряной турбины.

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт·ч/год. Экономический потенциал составляет примерно 260 млрд кВт·ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Энергетические ветровые зоны в России расположены в основном на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30% экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16% — в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.