Делаем сварочный аппарат самостоятельно

Многие конструкции в быту (в гараже, на даче, дома и т.д.) трудно построить без применения сварки, в особенности электродуговой. В настоящее время на прилавках магазинов появилось большое количество электросварочных аппаратов как импортного, так и российского про­изводства. Хорошие аппараты стоят доро­го, а более дешевые не всегда обеспечи­вают качество сварочных работ. В предлагаемой статье хотелось бы поделиться некоторыми соображениями в основном практического характера по конструированию любительских свароч­ных аппаратов (С.А.) на основеанализа ранее опублико­ванных
материалов. Это поможет не толь­ко в самостоятельном изготовлении любительского  С.А., но и при выборе и по­купке уже готовых сварочных аппаратов.

Схема мостового выпрямителя для сварочного аппарата

Рисунок 1. Схема мостового выпрямителя для сварочного аппарата.

Сварочные аппараты бывают постоян­ного и переменного тока.

С.А. постоянного тока используются при сварке на малых токах тонколисто­вого металла (кровельная сталь, автомо­бильная и т.д.). Сварочная дуга на посто­янном токе более устойчива, возможна сварка на прямой и обратной полярнос­ти. На постоянном токе можно варить электродной проволокой без обмазки и электродами, предназначенными для сварки, как на постоянном токе, так и на переменном. Для придания устойчивости горения дуги на малых токах желательно иметь повышенное напряжение холостого хода Uxxсварочной обмотки (до 70 – 75 В). Для выпрямления переменного тока используются простейшие «мостовые» выпрямители на мощных диодах с ради­аторами охлаждения (рис. 1).

Для сглаживания пульсаций напряже­ния один из выводов С.А.  А подсоединяют к держателю электродов через дроссель L1, представляющий собой катушку из 10 – 15 витков медной шины сечением S = 35 мм2,  намотанной на любом сердеч­нике, например, от магнитного пускателя. Для выпрямления и плавного регули­рования сварочного тока используются более сложные схемы с использованием мощных управляемых тиристоров. Одна из возможных схем на тиристорах типа Т161 (Т160) приведена в статье А.Чернова «И зарядит и приварит» (Моделист-конструктор, 1994, № 9). Преимущества ре­гуляторов постоянного тока — в их уни­версальности. Диапазон изменения ими напряжений составляет 0,1-0,9 Uxx, что позволяет использовать их не только для ­плавной регулировки тока сварки, но и для зарядки аккумуляторных батарей, питания электронагревательных элементов и других целей.

Схема падающей внешней характеристики сварочного аппарата

Рисунок 2. Схема падающей внешней характеристики сварочного аппарата.

Рис. 1. Мостовой выпрямитель для сварочного аппарата. Показано подключение С.А. для свар­ки тонколистового металла на “обратной” по­лярности — “+” на электроде, “-” на свари­ваемой детали U2: — выходное переменное на­пряжение сварочного аппарата

Сварочные аппараты переменного тока применяются при сварке электрода­ми, диаметр которых более 1,6 – 2 мм, а толщина свариваемых изделий — более 1,5 мм. При этом ток сварки значителен (десятки ампер) и дуга горит достаточно устойчиво. Используются электроды, предназначенные для сварки только на переменном токе. Для нормальной работы сварочного аппарата необходимо:

  1. Обеспечить выходное напряжение для надежного зажигания дуги. Для лю­бительского С.А. Uxx = 60 – 65в. Более вы­сокое выходное напряжение холостого хода не рекомендуется, что связано в ос­новном с обеспечением безопасности ра­боты (Uxxпромышленных сварочных ап­паратов — до 70 – 75 В).
  2. Обеспечить напряжение сварки Uсв, необходимое для устойчивого горения дуги. В зависимости от диаметра электро­да – Uсв =18 – 24в.
  3. Обеспечить номинальный свароч­ный ток Iсв = (30 – 40) dэ, где Iсв— вели­чина сварочного тока, А; 30 – 40 — коэф­фициент, зависящий от типа и диаметра электрода; dэ — диаметр электрода, мм.
  4. Ограничить ток короткого замыка­ния Iкз, величина которого не должна пре­вышать номинальный сварочный ток более чем на 30 – 35%.

Устойчивое горение дуги возможно в том случае, если сварочный аппарат будет обладать падающей внешней характерис­тикой, которая определяет зависимость между силой тока и напряжением в сва­рочной цепи (рис. 2).

С.А. показывает, что для грубого (ступен­чатого) перекрытия диапазона сварочных токов необходима коммутация как пер­вичных обмоток, так и вторичных (что конструктивно более сложно из-за боль­шого протекающего в ней тока). Кроме того, для плавного изменения тока сварки в пределах выбранного диапазона используются механические устройства переме­щения обмоток. При удалении сварочной обмотки относительно сетевой увеличи­ваются магнитные потоки рассеивания, что приводит к снижению тока сварки.

Схема магнитопровода стержневого типа

Рисунок 3. Схема магнитопровода стержневого типа.

Конструируя любительский С.А., не следует стремиться к полному перекры­тию диапазона сварочных токов. Целесо­образно на первом этапе собрать свароч­ный аппарат для работы с электродами диаметром 2 – 4 мм, а на втором этапе, в случае необходимости работы на малых токах сварки, дополнить его отдельным выпрямительным устройством с плавным регулированием сварочного тока. Любительские сварочные аппараты должны удовлетворять ряду требований, основные из которых следующие: отно­сительная компактность и небольшой вес; достаточная продолжительность работы (не менее 5 – 7 электродов dэ = 3 – 4 мм) от сети 220в.

Вес и габариты аппарата могут быть снижены благодаря уменьше­нию его мощности, а увеличение продол­жительности работы — благодаря исполь­зованию стали с высокой магнитной про­ницаемостью и теплостойкой изоляции обмоточных проводов. Эти требования несложно выполнить, зная основы кон­струирования сварочных аппаратов и при­держиваясь предлагаемой технологии их изготовления.

Рис. 2. Падающая внешняя характеристика сварочного аппарата: 1 — семейство характе­ристик для различных диапазонов сварки; Iсв2, Iсвз, Iсв4 — диапазоны токов сварки для электродов диаметром 2, 3 и 4 мм соответст­венно; Uxx— напряжение холостого хода СА. Iкз – ток короткого замыкания; Ucв -диапазон напряжений сварки (18 – 24 В).

Рис. 3. Магнитопровод стержневого типа: а — пластины Г-образной формы; б — пластины П-образной формы; в — пластины из полос трансформаторной стали; S =axb— площадь поперечного сечения сердечника (керна), смс, d— размеры окна, см.

Итак, выбор типа сердечника. Для изготовления сварочных аппара­тов используют в основном магнитопроводы стержневого типа, поскольку в ис­полнении они более технологичны. Сер­дечник набирают из пластин электротех­нической стали любой конфигурации тол­щиной 0,35- 0,55 мм, стянутых шпиль­ками, изолированными от сердечника (рис. 3). При подборе сердечника необ­ходимо учитывать размеры “окна”, чтобы поместились обмотки сварочного аппара­та, и площадь поперечного сечения сер­дечника (керна) S =axb, см2. Как пока­зывает практика, не следует выбирать ми­нимальные значения S = 25 – 35 см, по­скольку сварочный аппарат не будет об­ладать требуемым запасом мощности и качественную сварку получить будет труд­но. Да и перегрев сварочного аппарата после непродолжительной работы также неизбежен.

Схема магнитопровода тороидального типа

Рисунок 4. Схема магнитопровода тороидального типа.

Сечение сердечника должно состав­лять S = 45 – 55 см2. Сварочный аппарат будет несколько тяжелее, но не подведет! Все большее распространение получа­ют любительские сварочные аппараты на сердечниках тороидального типа, которые обладают более высокими электротехни­ческими характеристиками, примерно в 4 – 5 раз выше, чем у стержневого, а электропотери невелики. Трудозатраты на их изготовление более значительны и свя­заны в первую очередь с размещением обмоток на торе и сложностью самой на­мотки.

Однако при правильном подходе они дают хорошие результаты. Сердечни­ки изготовляют из ленточного трансфор­маторного железа, свернутого в рулон в форме тора. Примером может служить сердечник из автотрансформатора «Латр» на 9 А. Для увеличения внутреннего диа­метра тора («окна») с внутренней стороны отматывают часть стальной ленты и на­матывают на внешнюю сторону сердеч­ника. Но, как показывает практика, одно­го «Латра» недостаточно для изготовления качественного С.А. (мало сечение S). Даже после работы с 1 – 2 электродами диамет­ром 3 мм он перегревается. Возможно ис­пользование двух подобных сердечников по схеме, описанной в статье Б.Соколова «Сварочный малыш» (Сам, 1993, № 1), или изготовление одного сердечника путем перемотки двух (рис. 4).

Рис. 4. Магнитопровод тороидального типа: 1.2 – сердечник автотрансформатора до и после перемотки; 3 конструкция С.А. на базе двух тороидальных сердечников; W11W12 — сетевые обмотки, включенные параллельно; W2— сварочная обмотка; S =axb— площадь поперечного сечения сердечника, см2 , с, d— внутренний и внешний диаметры тора, см; 4 — электрическая схема С.А. на базе двух со­стыкованных тороидальных сердечников.

Особого внимания заслуживают люби­тельские С.А., изготовленные на базе ста­торов асинхронных трехфазных электро­двигателей большой мощности (более 10 кВт). Выбор сердечника определяется площадью поперечного сечения статора S. Штампованные пластины статора не в полной мере соответствуют параметрам электротехнической трансформаторной стали, поэтому уменьшать сечение S менее 40 – 45 см нецелесообразно.

Схема крепления выводов обмоток СА

Рисунок 5. Схема крепления выводов обмоток СА.

Статор освобождают от корпуса, уда­ляют из внутренних пазов статорные об­мотки, срубают зубилом перемычки пазов, защищают внутреннюю поверх­ность напильником или абразивным кру­гом, скругляют острые кромки сердечни­ка и обматывают его плотно, с перекры­тием хлопчатобумажной изоляционной лентой. Сердечник готов для намотки об­моток.

Выбор обмоток. Для первичных (сете­вых) обмоток лучше использовать специ­альный медный обмоточный провод в х.б. (стеклотканевой) изоляции. Удовлетвори­тельной теплостойкостью обладают также провода в резиновой или резинотканевой изоляции. Непригодны для работы при повышенной температуре (а это уже за­кладывается в конструкцию любительско­го С.А.) провода в полихлорвиниловой (ПХВ) изоляции из-за возможного ее рас­плавления, вытекания из обмоток и их короткого замыкания. Поэтому полихлор­виниловую изоляцию с проводов необхо­димо либо снять и обмотать провода по всей длине х.б. изоляционной лентой, либо не снимать, а обмотать провод по­верх изоляции. Возможен и другой про­веренный на практике способ намотки. Но об этом ниже.

При подборе сечения обмоточных про­водов с учетом специфики работы С.А. (пе­риодический) допускаем плотность тока 5 А/мм2. При токе сварки 130 – 160 А (электрод dэ = 4 мм) мощность вторичной обмотки составит Р2 =Iсв х 160×24 = 3,5 – 4 кВт, мощность первичной обмот­ки с учетом потерь составит порядка 5— 5,5 кВт, а следовательно, максимальный ток первичной обмотки может достигать 25 А. Следовательно, сечение провода пер­вичной обмотки Sдолжно быть не менее 5 – 6 мм. На практике желательно ис­пользовать провод сечением 6 – 7 мм2 . Либо это прямоугольная шина, либо мед­ный обмоточный провод диаметром (без изоляции) 2,6 – 3мм. (Расчет по известной формуле S = пиR2, где S— площадь круга, мм2  пи = 3,1428; R— радиус круга, мм.) При недостаточном сечении одного провода возможна намотка в два. При ис­пользовании алюминиевого провода его се­чение необходимо увеличить в 1,6 – 1,7 раза. Можно ли уменьшить сечение провода сетевой обмотки? Да, можно. Но при этом С.А. потеряет требуемый запас мощности, будет нагреваться быстрее, да и рекомен­дуемое сечение керна S = 45 – 55 см в этом случае будет неоправданно велико. Число витков первичной обмотки W1 определяется из следующего соотноше­ния: W1 =  [(30 – 50):S] х U1где 30-50 – постоянный коэффициент; S— сечение керна, см2 , W1 = 240 витков с отводами от 165, 190 и 215 витков, т.е. через каждые 25 витков.

Схема способов намотки обмоток СА на сердечнике стержневого типа

Рисунок 6. Схема способов намотки обмоток СА на сердечнике стержневого типа.

Большее количество отводов сетевой обмотки, как показывает практика, неце­лесообразно. И вот почему. За счет умень­шения числа витков первичной обмотки увеличивается как мощность С.А., так и Uxx, что приводит к повышению напря­жения горения дуги и ухудшению каче­ства сварки. Следовательно, только изме­нением числа витков первичной обмотки добиться перекрытия диапазона свароч­ных токов без ухудшения качества сварки нельзя. Для этого необходимо предусмот­реть переключение витков вторичной (сварочной) обмотки W2.

Вторичная обмотка Wдолжна содер­жать 65 – 70 витков медной изолирован­ной шины сечением не менее 25 мм (лучше сечением 35 мм ). Вполне подой­дет и гибкий многожильный провод (на­пример, сварочный) и трехфазный сило­вой многожильный кабель. Главное, се­чение силовой обмотки не должно быть меньше требуемого, а изоляция — тепло­стойкой и надежной. При недостаточном сечении провода возможна намотка в два и даже в три провода. При использовании алюминиевого провода его сечение необ­ходимо увеличить в 1,6 – 1,7 раза.

Рис. 5. Крепление выводов обмоток СА: 1 — корпус СА; 2 — шайбы; 3 — клеммный болт; 4 — гайка; 5 — медный наконечник с проводом.

Трудность приобретения переключате­лей на большие токи, да и практика по­казывают, что наиболее просто выводы сварочной обмотки завести через медные наконечники под клеммные болты диа­метром 8 – 10 мм (рис. 5). Медные наконечники изготавливают из медных трубок подходящего диаметра длиной 25 – 30 мм и крепят на проводах опрессовкой и желательно пропайкой. Особо остановимся на порядке намот­ки обмоток. Общие правила:

  1. Намотка должна производиться по изолированному керну и всегда в одном направлении (например, по часовой стрелке).
  2. Каждый слой обмотки изолируют слоем х.б. изоляции (стеклоткани, элек­трокартона, кальки), желательно с про­питкой бакелитовым лаком.
  3. Выводы обмоток залуживают, мар­кируют, закрепляют х.б. тесьмой, на вы­воды сетевой обмотки дополнительно на­девают х.б. кембрик.
  4. В случае сомнений в качестве изо­ляции намотку можно проводить с ис­пользованием х/б шнура как бы в два про­вода (автор использовал х.б. нить для ры­боловства). После намотки одного слоя обмотку с х.б. нитью фиксируют клеем, лаком и т.д. и после высыхания наматы­вают следующий ряд.
Схема способов намотки обмоток СА на сердечнике тороидального типа

Рисунок 7. Схема способов намотки обмоток СА на сердечнике тороидального типа.

Рассмотрим порядок расположения обмоток на магнитопроводе стержневого типа. Сетевую обмотку можно располо­жить двумя основными способами. Пер­вый способ позволяет получить более «жесткий» режим сварки. Сетевая обмот­ка в этом случае состоит из двух одина­ковых обмоток W1W2, расположенных на разных сторонах сердечника, соеди­ненных последовательно и имеющих оди­наковое сечение проводов. Для регули­ровки выходного тока на каждой из об­моток сделаны отводы, которые попарно замыкаются (рис. 6а,в).

Второй способ предусматривает намот­ку первичной (сетевой) обмотки на одной из сторон сердечника (рис. 6 в,г). В этом случае СА обладает крутопадающей ха­рактеристикой, варит «мягко», длина дуги меньше влияет на величину сварочного тока, а следовательно, и на качество свар­ки. После намотки первичной обмотки СА необходимо проверить на наличие короткозамкнутых витков и правильность вы­бранного числа витков. Сварочный транс­форматор включают в сеть через плавкий предохранитель (4 – 6А) и желательно ам­перметр переменного тока. Если предо­хранитель сгорает или сильно греется, то  это явный признак короткозамкнутого витка. Следовательно, первичную обмот­ку придется перемотать, обратив особое внимание на качество изоляции.

Рис. 6. Способы намотки обмоток СА на сер­дечнике стержневого типа: а – сетевая обмот­ка на двух сторонах сердечника; б — соответ­ствующая ей вторичная (сварочная) обмотка, включенная встречно-параллельно; в — сете­вая обмотка на одной стороне сердечника; г — соответствующая ей вторичная обмотка, включенная последовательно.

Если сварочный аппарат сильно гудит, а потребляемый ток превышает 2 – 3 А, то это означает, что число первичной об­мотки занижено и необходимо подмотать еще некоторое количество витков. Ис­правный СА потребляет ток холостого хода не более 1 – 1,5 А, не греется и гудит не сильно. Вторичную обмотку СА всегда нама­тывают на двух сторонах сердечника. Для первого способа намотки вторичная об­мотка также состоит из двух одинаковых половин, включенных для повышения ус­тойчивости горения дуги (рис. 6) встречно-параллельно, а сечение провода можно взять несколько меньше — 15 – 20 мм2 .

Схема подключения измерительных приборов

Рисунок 8. Схема подключения измерительных приборов.

Для второго способа намотки основная сварочная обмотка W21наматывается на свободной от обмоток стороне сердечника и составляет 60 – 65% от общего числа витков вторичной обмотки. Она служит в основном для поджига дуги, а во время сварки, за счет резкого увеличения маг­нитного потока рассеивания, напряжение на ней падает на 80 – 90%. Дополнитель­ная сварочная обмотка W2наматывается поверх первичной. Являясь силовой, она поддерживает в требуемых пределах на­пряжение сварки, а следовательно, и сва­рочный ток. Напряжение на ней падает в режиме сварки на 20 – 25% относительно напряжения холостого хода. После изготовления С.А необходимо провести его настройку и проверку каче­ства сварки электродами различного диа­метра. Процесс настройки заключается в следующем. Для измерения сварочного тока и напряжения необходимо приобрес­ти два электроизмерительных прибора — амперметр переменного тока на 180— 200 А и вольтметр переменного тока на 70 – 80в.

Рис. 7. Способы намотки обмоток СА на сер­дечнике тороидального типа: 1.2 — равномер­ная и секционная намотка обмоток соответст­венно: а — сетевая б — силовая.

Рис. 8. Схема подключения измерительных приборов.

Схема их подключения показана на рис. 8. При сварке различными электродами снимают значения тока сварки — Iсв и напряжения сварки Uсв, которые долж­ны быть в требуемых пределах. Если сва­рочный ток мал, что бывает чаще всего (электрод липнет, дуга неустойчивая), то в этом случае либо переключением пер­вичной и вторичной обмоток устанавли­вают требуемые значения, либо перерас­пределяют количество витков вторичной обмотки (без их увеличения) в сторону увеличения числа витков, намотанных по­верх сетевой обмотки. После сварки можно сделать разлом или распиливание кромок свариваемых изделий, и сразу станет ясно качество сварки: глубина провара и толщина на­плавленного слоя металла. По результатам измерений полезно со­ставить таблицу.

Схема измерителей напряжения и тока сварки и конструкция трансформатора тока

Рисунок 9. Схема измерителей напряжения и тока сварки и конструкция трансформатора тока.

Исходя из данных таблицы, выбирают оптимальные режимы сварки для элек­тродов различного диаметра, помня о том, что при сварке электродами, например, диаметром 3 мм, электродами диаметром 2 мм можно резать, т.к. ток резки больше сварочного на 30 -25%. Трудность покупки измерительных приборов, рекомендованных выше, за­ставила автора при бегнуть к изготовле­нию измерительной схемы (рис. 9) на ба­зе наиболее распространенного милли­амперметра постоянного тока на 1—10 мА. Она состоит из измерителей напряжения и тока, собранных по мостовой схеме.

Рис. 9. Принципиальная схема измерителей напряжения и тока сварки и конструкция трансформатора тока.

Измеритель напряжения подключают к выходной (сварочной) обмотке С.А. На­стройку осуществляют с помощью лю­бого тестера, которым контролируют выходное напряжение сварки. С помо­щью переменного сопротивления R.3 стрелку прибора устанавливают на ко­нечное деление шкалы при максималь­ном значении UxxШкала измерителя напряжения достаточно линейна. Для большей точности можно снять две – три контрольные точки и проградуировать измерительный прибор на измерение напряжений.

Более сложно настроить измеритель тока, поскольку он подключается к само­стоятельно изготовленному трансформа­тору тока. Последний представляет собой сердечник тороидального типа с двумя об­мотками. Размеры сердечника (внешний диаметр 35—40 мм) принципиального значения не имеют, главное, чтобы умес­тились обмотки. Материал сердечника — трансформаторная сталь, пермаллой или феррит. Вторичная обмотка состоит из 600 – 700 витков медного изолированного провода марки ПЭЛ, ПЭВ, лучше ПЭЛШО диаметром 0,2 – 0,25 мм и под­ключена к измерителю тока. Первичная об­мотка — это силовой провод, проходящий внутри кольца и подключаемый к клемному болту (рис. 9). Настройка измерителя тока заключается в следующем. К силовой (сварочной) обмотке С.А. подключают ка­либрованное сопротивление из толстой нихромовой проволоки на 1 – 2 сек (сильно греется) и измеряют напряжение на выходе С.А. По закону Ома определяют ток, протекающий в сварочной обмотке. Например, при подключении Rн = 0,2ом Uвых = 30в.

http://fazaa.ru/www.youtube.com/watch?v=LvIyLUOzS64

Схема инверторного сварочного аппарата

Схема инверторного сварочного аппарата.

Отмечают точку на шкале прибора. Трех – четырех измерений с различными Rдо­статочно, чтобы откалибровать измери­тель тока. После калибровки приборы ус­танавливают на корпус С.А, пользуясь об­щепринятыми рекомендациями. При сварке в различных условиях (сильная или слаботочная сеть, длинный или короткий подводящий кабель, его се­чение и т.д.) переключением обмоток на­страивают С.А. на оптимальный режим сварки, и далее переключатель можно ус­тановить в нейтральное положение. Несколько слов о контактно-точечной сварке. К конструированию С.А. данного типа предъявляется ряд специфических требований:

  1. Мощность, отдаваемая в момент сварки, должна быть максимальной, но не более 5—5,5 кВт. В этом случае потреб­ляемый из сети ток не превысит 25 А.
  2. Режим сварки должен быть «жест­ким», а следовательно, намотка обмоток С.А. должна проводиться по первому ва­рианту.
  3. Токи, протекающие в сварочной об­мотке, достигают значений 1500—2000 А и выше. Следовательно, напряжение свар­ки должно быть не более 2—2,5в, а на­пряжение холостого хода — 6—10в.
  4. Сечение проводов первичной обмот­ки не менее 6—7 мм , а сечение вторич­ной обмотки не менее 200 мм. Достигают такого сечения проводов путем намотки 4—6 обмоток и их последующего парал­лельного соединения.
  5. Дополнительных отводов от первич­ной и вторичной обмоток делать нецеле­сообразно.
  6. Число витков первичной обмотки можно взять минимально расчетное в связи с кратковременностью работы С.А.
  7. Сечение сердечника (керна) менее 45—50 см брать не рекомендуется.
  8. Сварочные наконечники и подвод­ные кабели к ним должны быть медными и пропускать соответствующие токи (диа­метр наконечников 12—14 мм).

http://fazaa.ru/www.youtube.com/watch?v=L75jxmwkoII

Схема трансформатора и электродержателя

Схема трансформатора и электродержателя.

Особый класс любительских С.А. пред­ставляют аппараты, изготовленные на базе промышленных осветительных и дру­гих трансформаторов (2—3 фазных) на выходное напряжение 36в и мощностью не менее 2,5—3 кВт. Но прежде чем брать­ся за переделку, необходимо измерить се­чение керна, которое должно быть не менее 25 см , и диаметры первичной и вторичной обмоток. Вам сразу станет ясно, чего можно ждать от переделки дан­ного трансформатора.

И в заключение несколько технологи­ческих советов.

Подключение сварочного аппарата к сети должно производиться проводом се­чением 6—7 мм через автомат на ток 25— 50 А, например АП-50. Диаметр электрода в зависимости от толщины свариваемого металла можно выбрать, исходя из следующего соотноше­ния: da= (1—1,5)L, где L— толщина сва­риваемого металла, мм.

http://fazaa.ru/www.youtube.com/watch?v=UX81XigBgBY

Длина дуги выбирается в зависимости от диаметра электрода и в среднем равна 0,5—1,1 d3. Рекомендуется выполнять сварку короткой дугой 2—3 мм, напряже­ние которой равно 18—24 В. Увеличение длины дуги приводит к нарушению ста­бильности ее горения, повышению потерь на угар и разбрызгиванию, снижению глу­бины проплавления основного металла. Чем длиннее дуга, тем выше напряжение сварки. Скорость сварки выбирает свар­щик в зависимости от марки и толщины металла.

Схема устройства однофазного трансформатора

Схема устройства однофазного трансформатора.

При сварке на прямой полярности плюс(анод) подсоединяют к детали и минус (катод) — к электроду. Если необ­ходимо, чтобы на детали выделялось меньшее количество тепла, например, при сварке тонколистовых конструкций, при­меняют сварку на обратной полярности (рис. 1). В этом случае минус (катод) при­соединяют к свариваемой детали, а плюс(анод) — к электроду. При этом не только обеспечивается меньший нагрев свариваемой детали, но и ускоряется про­цесс расплавления электродного металла за счет более высокой температуры анод­ной зоны и большего подвода тепла.

Сварочные провода присоединяют к СА через медные наконечники под клеммные болты с наружной стороны корпуса сварочного аппарата. Плохие контактные соединения снижают мощностные характеристики СА, ухудшают качество сварки и могут вызвать их пере­грев и даже возгорание проводов. При небольшой длине сварочных про­водов (4—6 м) сечение их должно быть не менее 25 мм. При выполнении сварочных работ не­обходимо соблюдать правила пожарной и электробезопасности при работе с электро­приборами.

http://fazaa.ru/www.youtube.com/watch?v=b0IwoYAWuQc

Сварочные работы следует вести в специальной маске с защитным стеклом марки С5 (на токи до 150—160 А) и рукавицах. Все переключения СА вы­полнять только после отключения свароч­ного аппарата от сети.