Классификация и принцип работы трансформатора тока

Трансформаторы тока классифицируются:

  • по числу коэффициентов трансформации: с одним коэффици­ентом трансформации; с несколькими коэффициентами трансфор­мации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток, или применением нескольких вторичных обмоток с различным числом витков, соот­ветствующим различному номинальному вторичному току;
  • по числу ступеней трансформации: одноступенчатые; кас­кадные (многоступенчатые), т. е. с несколькими ступенями транс­формации тока;
  • по выполнению первичной обмотки: одновитковые; многовитковые.
Схема подключения трёхфазного электросчётчика через трансформаторы тока

Схема подключения трёхфазного электросчётчика через трансформаторы тока.

Одновитковые трансформатоьры тока имеют 2 разновидности:без собственной первичной обмотки; с собственной первичной обмоткой. Одновитковые трансформаторы тока, не имеющие собственной первичной обмотки, выполняются встроенными, шинными или разъемными.

Встроенный трансформатор тока представляет собой магнитопровод с намотанной на него вторичной обмоткой. Он не имеет собственной первичной обмотки. Ее роль выполняет токоведущий стержень проходного изолятора. Этот трансформатор тока не имеет изоляционных элементов между первичной и вто­ричной обмотками. Их роль выполняет изоляция проходного изо­лятора.

Трансформатор тока ТПЛ-10

Трансформатор тока ТПЛ-10: 1 – сердечник Р; 2 – сердечник класса 0,5; 3 – литой корпус; 4 – выводы первичной обмотки; 5 – выводы вторичных обмоток; 6 – крепежный уголок; 7 – заземляющий болт; 8 – паспортный щиток; 9 – предупредительная табличка.

Собственная первичная обмотка ТТ – токоведущий стержень проходного изолятора (шина). В шинном трансформаторе тока роль первичной обмотки выполняют одна или несколько шин распределительного устрой­ства, пропускаемые при монтаже сквозь полость проходного изоля­тора. Последний изолирует такую первичную обмотку от вто­ричной.

Разъемный трансформатор тока 2 тоже не имеет собственной первичной обмотки. Его магнитопровод состоит из 2-х частей, стягиваемых болтами. Он может размыкаться и смыкаться вокруг проводника с током, являющимся первичной обмоткой этого ТТ. Изоляция между первичной и вторичной обмотками наложена на магнитопровод со вторичной обмоткой.

Одновитковые ТТ, имеющие собственную первичную обмотку, выполняются со стержневой первичной обмоткой или с U-образной.

Трансформатор тока 3 имеет первичную обмотку в виде стержня круглого или прямоугольного сечения, закрепленного в проход­ном изоляторе.

Трансформатор тока 4 имеет U-образную первичную обмотку, выполненную таким образом, что на нее наложена почти вся внутренняя изоляция ТТ.

Многовитковые трансформаторы тока изготовляются с катушечной первичной обмоткой, надеваемой на магнитопровод; с петлевой первичной обмоткой 5, состоящей из нескольких витков; со звеньевой первичной обмот­кой 6, выполненной таким образом, что внутренняя изоляция трансформатора тока конструктивно распределена между первич­ной и вторичной обмотками, а взаимное расположение обмоток напоминает звенья цепи; с рымовидной первичной обмоткой, выполненной таким образом, что внутренняя изоляция трансфор­матора тока нанесена в основном только на первичную обмотку, имеющую форму рыма.

Основными параметрами и характеристиками трансформатора тока в соответствии с ГОСТ 7746—78 «Трансформаторы тока. Общие технические требования» являются:

Электромагнитная схема трансформатора

Электромагнитная схема трансформатора.

  1. Номинальное напряжение — действующее значение ли­нейного напряжения, при котором предназначен работать трансформатор тока, указываемое в паспортной таблице трансформатора тока. Для отечественных трансформаторов тока принята следующая шкала номинальных на­пряжений, кВ: 0,66; 6; 10; 15; 20; 24; 27; 35; 110; 150; 220; 330; 500; 750; 1150.
  2. Номинальный первичный ток I1н, указываемый в паспортной таблице трансформатора тока, – ток, проходящий по первичной обмотке, при котором предусмотрена продолжительная работа трансформатора тока. Для оте­чественных трансформаторов тока принята следующая шкала номинальных первичных токов, А: 1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000; 6000- 8000; 10 000; 12 000; 14 000; 16 000; 18 000; 20 000; 25 000; 28 000 ; 32 000, 35 000; 40 000. В трансформаторах тока, предназначенных для комплектова­ния турбо- и гидрогенераторов, значения номинального тока свыше 10 000 А могут отличаться от приведенных в данной шкале зна­чений. Трансформаторы тока, рассчитанные на номинальный первич­ный ток 15; 30; 75; 150; 300; 600; 750; 1200; 1500; 3000 и 6000 А, должны допускать неограниченно длительное время наибольший рабочий первичный ток, равный соответственно 16; 32; 80; 160; 320, 630; 800; 1250; 1600; 3200 и 6300 А. В остальных случаях наибольший первичный ток равен номинальному первичному току.
  3.  Номинальный вторичный ток I2н, указываемый в пас­портной таблице трансформаторов тока, –  ток, проходящий по вторичной обмотке. Номинальный вторичный ток принимается равным 1 или 5 А, причем ток 1 А допускается только для трансформаторов тока с номинальным пер­вичным током до 4000 А. По согласованию с заказчиком допу­скается изготовление трансформатора тока с номинальным вторичным током 2 или 2,5 А.
  4.  Вторичная нагрузка трансформатора тока z2н соответствует полному сопро­тивлению его внешней вторичной цепи, выраженному в омах, с указанием коэффициента мощности. Вторичная нагрузка может также характеризоваться полной мощностью в вольт-амперах, потребляемой ею при данном коэффициенте мощности и номиналь­ном вторичном токе. Вторичная нагрузка с коэффициентом мощности cos ср2 = 0,8, при которой гарантируется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его но­минального значения, называется номинальной вто­ричной  нагрузкой  трансформатора тока  z2н.ном Для отечественных трансформаторов тока установлены следую­щие значения номинальной вторичной нагрузки S2н .ном, выра­женной в вольт-амперах, при коэффициенте мощности cos р2 = 0,8: 1; 2; 2,5; 3; 5; 7,5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 90; 100; 120. Соответствующие значения номинальной вторичной нагрузки (в омах) определяются выражением Z2н. ном = S2н. ном/I2н^2.
  5. Коэффициент трансформации трансформатора тока  равен отношению первич­ного тока ко вторичному. В расчетах трансформаторов тока применяются 2 величины: действительный коэффициент трансформации n и номинальный коэффициент трансформации nн. Под действительным коэффици­ентом трансформации n понимается отношение действительного первичного тока к действительному вторичному. Под номиналь­ным коэффициентом трансформации nн понимается отношение номинального первичного тока к номинальному вторичному.
  6. Стойкость трансформатора тока к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.
Измерительный трансформатор тока. Схема включения

Измерительный трансформатор тока. Схема включения.

Ток электродинамической стойкости Iд равен наибольшей амп­литуде тока короткого замыкания за все время его протекания, которую трансформатор выдерживает без повреждений, препятствующих его дальнейшей исправной работе. Ток Iд характеризует способность трансформатора тока противостоять механическим (электродинамическим) воздей­ствиям тока короткого замыкания.

Электродинамическая стой­кость может характеризоваться также кратностью Kд, представля­ющей собой отношение тока электродинамической стойкости к амплитуде номинального первичного тока. Требования электро­динамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока.

Ток термической стойкости Itт равен наибольшему действую­щему значению тока короткого замыкания за промежуток Tт, которое трансформатор тока выдерживает в течение всего промежутка времени без нагрева токоведущих частей до температур, превышающих допу­стимые при токах короткого замыкания   и без повре­ждений, препятствующих его дальнейшей работе.

Элементами, участвующими в преобразо­вании тока, являются пер­вичная 1 и вторичная 2 об­мотки, намотанные на один и тот же магнитопровод 3. Первичная обмотка включается последовательно (в рас­сечку токопровода высокого напряжения 4), т. е. обтекается током линии I1. Ко вторичной обмотке подключаются измерительные приборы (амперметр, токовая обмотка счетчика) или реле. При ра­боте трансформатора тока вторичная обмотка всегда замкнута на нагрузку.

Первичную обмотку совместно с цепью высокого напряжения называют первичной цепью, а внешнюю цепь, получаю­щую измерительную информацию от вторичной обмотки трансфор­матора тока (т. е. нагрузку и соединительные провода), называют вторичной цепью. Цепь, образуемую вторичной об­моткой и присоединенной к ней вторичной цепью, называют ветвью вторичного тока.

Из принципиальной схемы трансформатора видно, что между первичной и вторичной обмотками не имеется электрической связи. Они изолированы друг от друга на полное рабочее напря­жение. Это и позволяет осуществить непосредственное присоеди­нение измерительных приборов или реле ко вторичной обмотке и тем самым исключить воздействие высокого напряжения, при­ложенного к первичной обмотке, на обслуживающий персонал. Так как обе обмотки наложены на один и тот же магнитопровод, то они являются магнитно-связанными.

Схема трансформатора тока

Рисунок 1. Схема трансформатора тока.

На рис. 1 изображены только те элементы трансформатора тока, которые участвуют в преобразовании тока. Конечно, трансформатор тока  имеет много других элементов, обеспечивающих требуемый уро­вень изоляции, защиту от атмосферных воздействий, надлежащие монтажные и эксплуатационные характеристики. Однако они не принимают участия в преобразовании тока и будут рассмат­риваться ниже в соответствующих главах.

Перейдем к рассмотрению принципов действия трансформатора тока. По первичной обмотке 1 трансформатора про­ходит ток I1  называемый первичным. Он зависит только от параметров первичной цепи. Поэтому при анализе явлений, происходящих в трансформаторе тока, первичный ток можно считать заданной величиной. При прохождении первичного тока по первичной обмотке в магнитопроводе создается перемен­ный магнитный поток Ф1, изменяющийся с той же частотой, что и ток I1. Магнитный поток Ф1 охватывает витки как первичной, так и вторичной обмоток.

Пересекая витки вторичной обмотки, магнитный поток Ф1 при своем изменении индуцирует в ней элект­родвижущую силу. Если вторичная обмотка замкнута на некото­рую нагрузку, т. е. к ней присоединена вторичная цепь, то в такой системе «вторичная обмотка — вторичная цепь» под действием индуцируемой э. д. с. будет проходить ток. Этот ток согласно закону Ленца будет иметь направление, противоположное на­правлению первичного тока I1.

Ток, проходящий по вторичной обмотке, создает в магнитопроводе переменный магнитный поток Ф2, который направлен встречно магнитному потоку Ф1. Вследствие этого магнитный поток в магнитопроводе, вызванный первичным током, будет уменьшаться. В результате сложения магнитных потоков Ф1 и Ф2 в магнитопроводе устанавливается результирующий магнитный поток Ф0 = Ф1 — Ф2, составляющий несколько процентов магнитного по­тока Ф1. Поток Ф0 и является тем звеном, посред­ством которого осуществляется передача энергии от первичной обмотки ко вторичной в процессе преобразования тока.

Результирующий магнитный поток Ф0, пересекая витки обеих обмоток, индуцирует при своем изменении в первичной обмотке противо-э. д. с. Ех, а во вторичной обмотке — э. д. с. Ей. Так как витки первичной и вторичной обмоток имеют примерно одинаковое сцепление с магнитным потоком в магнитопроводе (если прене­бречь рассеянием), то в каждом витке обеих обмоток индуцируется одна и та же э. д. с. Под воздействием э. д. с. Е2 во вторичной обмотке протекает ток I2, называемый вторичным током.

Понижающий трансформатор напряжения

Понижающий трансформатор напряжения.

Если обозначить число витков первичной обмотки через W1, а вторичной обмотки — через W2, то при протекании по ним соот­ветственно токов I1 и I2 в первичной обмотке создается магнито­движущая сила F1 = I1*W1, называемая первичной маг­нитодвижущей силой (м. д. с), а во вторичной обмотке — магнитодвижущая сила F2 = I2*W2, называемая вто­ричной м. д. с. Магнитодвижущая сила измеряется в ам­перах.

При отсутствии потерь энергии в процессе преобразования тока магнитодвижущие силы F1 и F2 должны быть численно равны, но направлены в противоположные стороны. Трансформатор тока, у которого процесс преобразования тока не сопровождается потерями энергии, называется и де а л ь н ы м. Для идеального трансформатора тока справедливо следую­щее векторное равенство:

F1=-F2 или  I1W1=I2W2

Из этого равенства следует ,что I1/I2=W2/W1=n  т. е. токи в обмотках идеального трансформатора тока обратно пропорциональны числам витков.

Отношение первичного тока ко вторичному I1/I2  или числа витков вторичной обмотки к числу витков первичной обмотки W2/W1 называется коэффициентом трансформа­ции  п идеального трансформатора тока. Учитывая  это равенство , можно написать I1=I2*W2/W1=I2*n   т. е. первичный ток I1 равен вторичному току I2, умноженному на коэффициент трансформации трансформатора тока n.

В реальных трансформаторах тока  преобразование тока сопровождается потерями энергии, расходуемой на создание магнитного потока в магнитопроводе, на нагрев и перемагничивание магнитопровода, а также на нагрев проводов вторичной обмотки и вторичной цепи. Эти потери энергии нарушают установленные выше равенства для абсолютных значений м. д. с. F1 и F2.

В реальном трансформа­торе первичная м. д. с. должна обеспечить создание необходимой вторичной м. д. с, а также дополнительной м. д. с, расходуе­мой на намагничивание магнитопровода и покрытие других по­терь энергии. Следовательно, для реального трансформатора урав­нение будет иметь следующий вид:
где  — полная м. д. с. намагничивания, затрачиваемая на про­ведение магнитного потока Фо по магнитопроводу, на нагрев и перемагничивание его.

В соответствии с этим равенство   примет вид

i1*W1=i2*W2+i0*W1

где   i0 — ток  намагничивания,  создающий  в магнитопроводе магнитный поток Ф0 и являющийся частью первичного тока 11ш. Разделив все члены уравнения  на W1, получим  i1=i2*W2/W1+i0. При первичном токе, не превышающем номинальный ток трансформатора, ток намагничивания обычно составляет не более 1—3% первич­ного тока, и им можно пренебречь. В  этом случае I1=I2*n. Таким образом, вторичный ток трансформатора пропорциона­лен первичному току.  Для понижения измеряемого тока необходимо, чтобы число витков вторичной обмотки было больше числа витков первичной обмотки.

Реальный транс­форматор тока несколько искажает результаты измерений, т. е. имеет погрешности.Иногда пользуются так называемым приведением тока к пер­вичной или вторичной обмотке I0’=I0/n.

Часть приведенного первичного тока идет на намагничивание магнитопровода, а остальная часть трансформируется во вторичную цепь, т. е. первичный ток   как бы разветвляется по 2-м параллельным цепям: по цепи нагрузки и цепи намагничивания.  Сопротивление первичной обмотки трансформатора тока на схеме замещения не показано, так как оно не оказывает влияния на работу трансформатора.