Термопреобразователи и приборы температуры

Для измерения температуры применяют термометры расширения, термопреобразователи сопротивления (ТС), термоэлектрические и мано­метрические термопреобразователи и приборы. В дистанционных системах передачи показаний с термопреобразователями сопротивления и термоэлектропреобразователями применяют вторичные приборы — логометры, автоматические мосты, милливольтметры и потенциометры.

Чувствительный элемент платинового термопреобразователя

Чувствительный элемент платинового термопреобразователя: 1 — платиновые спирали; 2 — керамический каркас; 3 - изоляционный порошок; 4— выводы; 5 — глазурь; 6 — металлическая оболочка.

Термометры расширения служат для измерения температуры в помещениях  наружного воздуха и т. п.

Чувствительный элемент представляет собой баллон с жидкостью, при нагревании которого жидкость расширяется и ее столбик поднимается в отсчетном устройстве.

Положение конца столбика относительно шкалы термометра соответствует температуре среды, в которой находится баллон.

Термопреобразователь сопротивления

Рисунок 1. Термопреобразователь сопротивления.

Термопреобразователи сопротивления (ГОСТ 6651—78) применяют в системах, где требуется измерять высокие температуры и дистанционно передавать показания. Принцип работы таких преобразователей основан на свойстве металлов изменять свое сопротивление при изменении температуры.

Чувствительные элементы термопреобразователей выполняют из пла­тины (ТСП) или меди (ТСМ).Платиновую или медную проволоку наматывают на каркас.Размеры каркаса в зависимости от конструкции термо­преобразователя могут быть от 60 до 100 мм. Каркас с чувствительным элементом 1 (рис. 1) помещен в корпус защитной арматуры, выполненной, как правило, из нержавеющей стали.

Провода проходят в изолирующих керамических бусах 3 и подсоединяются к зажимам 5 головки термо­преобразователя сопротивления. К линии связи преобразователь подсоединяют через сальниковое уплотнение 4. На технологических трубопроводах преобразователь вставляют в гнездо и укрепляют штуцером 6. Монтажная длина термопреобразователей от 10 до 3150 мм, диаметр защитной арматуры — от 10 до 300 мм.

Термоэлектрический преобразователь хромель-копель

Рисунок 2. Термоэлектрический преобразователь хромель-копель.

Статические характеристики преобразования стандартизированы (ГОСТ 6651—78) и выражают зависимость сопротивления чувствительного элемента от измеряемой температуры. Характеристика обозначается 1П, 100П, 10М, 100М и т. д. Число (1, 10, 100) обозначает сопротивление чувствительного элемента при 0°С(1, 10, 100 Ом), а буква — материал чувствительного элемента.

По точности измерения преобразователи выпускают пяти классов, которые обозначают римскими цифрами. Платиновые термопреобразователи сопротивления применяют для измерения температуры в диапазоне минус 260 - плюс 1100°С, а медные - минус 200 - плюс 200°С.

Применение преобразователей ограничено как из-за сравнительно низ­кой максимальной температуры, так и из-за значительных размеров кар­каса чувствительного элемента.

Термоэлектропреобразователи применяют для измерения температуры в пределах до 1800°С (ГОСТ 6616—74).

Действие термоэлектропреобразователя основано на следующем принципе. Если спаять два стержня из различных металлов, а затем спаянный (горячий) и свободные (холодные) концы поместить в среды с различными температурами, то между свободными концами стержней возникает разность потенциалов. Свободные концы соединяют с приемником тока и получают электрическую цепь, в которой находится источник э. д. с. Термо­электродвижущая сила т. э. д. с. в цепи зависит от разности температур, в которые помещены свободные и спаянные концы преобразователя, и от свойств металлов или сплавов, из которых изготовлены стержни.

В промышленности применяют преобразователи из следующих сплавов  хромель-копель (ХК), хромель-алюмель (ХА), платинородий-платина (ПП), платинородий (30% родия)-платинородий (6% родия) (ПР). Каждый тип термоэлектрического преобразователя (ХК, ХА, ПП, ПР) имеет свою градуировочную характеристику — зависимость между разни­цей температур горячего и холодных концов и возникающей между ними т. э. д. с.

Термобаллон

Рисунок 3. Термобаллон.

Термоэлектропреобразователь устроен ана­логично термопреобразователю сопротивления (рис. 2). Чувствительный элемент, помещенный в корпус 1, представляет собой спай термоэлектродов, припаянный к серебряному диску (горячий конец). Термоэлектроды изготовляют из указанных выше металлов или сплавов. Термоэлектроды выведены через каналы изолирующих бус на зажимы головки 3. К корпусам аппаратов или трубопроводов термоэлектропреобразователь крепят штуцерами или флан­цами.

Сложность применения термоэлектропреобразователей заключается в необходимости стабилизации температуры их свободных (холодных) концов. Если температура холодных концов, т. е. температура окружающего воздуха, будет изменяться, а температура, измеряемая в точке погружения горячего конца, останется неизменной, значения т. э. д. с. тоже будут изменяться. Нечувствитель­ности системы измерения к колебаниям температуры холодных концов достигают путем термостатирования холодных концов термоэлектропреобразователя, электрической компенсацией температурных влияний в месте установки термоэлектропреобразователя или электрической компенсацией температурных влияний в месте установки вторичного прибора.

На практике в основном применяют последний способ, при котором соединительную линию между термоэлектропреобразователем и вторич­ным прибором монтируют специальными компенсационными проводами. Для каждого типа термоэлектропреобразователя установлена определен­ная марка компенсационных проводов. При подсоединении холодных кон­цов термоэлектропреобразователя к компенсационным проводам между каждым термоэлектродом и проводом образуется дополнительная термо­пара. Материалы компенсационных проводов и способ их подключения выбирают такими, чтобы т. э. д. с. каждой дополнительной термопары были равны между собой и включены встречно. В этом случае суммар­ная т. э. д. с. будет зависеть только от разности температур горячего кон­ца термоэлектропреобразователя и свободных концов компенсационных проводов, подключаемых на вход вторичного прибора. Во вторичном при­боре устанавливают устройство, которое автоматически вносит поправку , в значение т. э. д. с. в зависимости от температуры, при которой находятся свободные концы компенсационных проводов внутри прибора. Манометрические термометры (ГОСТ 8624—80) применяют для изме­рения температуры в зонах аппаратов. Принцип их действия основан на зависимости между температурой и давлением жидкости или газа при постоянном объеме. Измерительную систему термометра заполняют жид­костью или газом.

http://youtu.be/u566OMb_rLU

Термобаллон 7 (рис. 3а) погружают в среду, темпера­туру которой будут измерять. С помощью капилляра 6 термобаллон 7 соединяют с манометром 9. При изменении температуры среды, в кото­рую погружен термобаллон, изменяется давление заполняющей систему жидкости или газа. Через капилляр 6 это давление подводится к пружи­не 1 (рис. 3б), припаянной к корпусу 8. При повышении температуры термобал­лона 7 давление заполняющего систему газа увеличивается и под его действием раскручивается манометрическая пру­жина. При уменьшении температуры пружина соответственно закручивается. Через тягу 4 перемещение конца пружи­ны передается на трибко-секторный меха­низм. На ось 5 трибки насажена стрелка 2, перемещающаяся по шкале пропорционально изменению давления.

КОММЕНТАРИИ
  • Добавить комментарий

Top