Молния с точки зрения электричества

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по инициативе которого был проведен опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 г. им была опубликована работа, в которой был описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.

Схема возникновения грозы

Схема возникновения грозы.

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до  20 км.

Как происходит формирование молнии? Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми. Иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Схема возникновения молнии

Схема возникновения молнии: а — формирование; б — разряд.

Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор необъяснённые свойства, отличающие молнии от разрядов между электродами.

Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько кв.км.

Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках (внутриоблачные молнии), а могут ударять в землю (наземные молнии).

Наземные молнии

Схема развития наземной молнии

Схема развития наземной молнии: а, б — две ступени лидера; 1 — облако; 2 — стримеры; 3 — канал ступенчатого лидера; 4 — корона канала; 5 — импульсная корона на головке канала; в — образование главного канала молнии (К).

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизируют их.

По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров.

Яркое свечение охватывает при этом все пройденные ступени, затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду. По мере продвижения лидера к земле напряжённость поля на его конце усиливается, и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду.

Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому.

Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.

Внутриоблачные молнии

Схема процесса электризации грозового облака и развития грозового разряда на наземный объект

Схема процесса электризации грозового облака и развития грозового разряда на наземный объект.

Внутриоблачные молнии включают в себя обычно только лидерные стадии, их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт, особенно если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год.

Люди и молния

Схема защиты дерева от ударов молнии

Схема защиты дерева от ударов молнии.

Молнии — серьезная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, т.к. электрический ток идет по кратчайшему пути "грозовое облако-земля". Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание.

Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших от молнии отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, у него могут начаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока» - места входа и выхода электричества.

Это древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1-2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжелых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, через 10-15 минут она, как правило, уже неэффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

Основные пути проникновения перенапряжений в здания и сооружения объектов охраны

Основные пути проникновения перенапряжений в здания и сооружения объектов охраны.

В мифологии и литературе:

Исторические личности:

Интересные факты

Деревья и молния

Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.

http://youtu.be/xcaBxU86guo

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии.

В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

КОММЕНТАРИИ
  • Добавить комментарий

×
Top